
Taking the ‘Sting’ Out of Evolving Digital Audio Networks 
 

Gregory F. Shay 
The Telos Alliance 

Cleveland Ohio 
 

 
Abstract -  Digital audio networking is here to stay.  It 

is the state of the art, and it is the future.   But with which 

standard?    Today there are multiple competing systems, 

and work on a compatibility standard is underway. Knowing 

a digital audio networking standard is the future that will be, 

what should equipment vendors and user do in the meantime 

to get ‘over the hump’ of these next few years? This paper 

will examine this problem by breaking down where some of 

the real design issues are. Given the difference between the 

systems, what is the most that could need to be changed?    

How can an equipment manufacturer today designing to use 

one particular digital audio network interface potentially 

leave the door open to the future standard even though that 

is not yet settled? Broad categories of equipment design 

issues will be considered, like: network capability, 

synchronization, stability and design of local clocking 

hardware, stream formats, memory for buffering, mips for 

protocol parsing, real time requirements on hardware and 

software. 

 

GOAL STATEMENT 

How can you design products today that will not need 
too extensive modifications to interoperate with different 
digital audio networks, and the future X192 AES standard 
whatever that settles to? There are signposts already pointing 
the way to the end goal, if you know how to see them. 

We are at that point in the history of digital audio 
networks that will be looked back on as just before 
standardization happened. 

The answer is to break down the implementation of an 
audio network interface design, and examine each part, and 
see how each part may vary.  We will find that there is not 
too much variation, and with some careful planning and 
selection of design features, it will be possible to support 
many of the existing audio networks and be ready for X192. 

BOTTOM UP APPROACH 

There are two ways to break down and describe a 
system: top down or bottom up.  There are many white 
papers [1], books [2] and current and pending standards 
documents [3] that describe the design of audio network 
from generally the top down.  To draw a contrasting 
approach, I will describe a bottom up interface design.  At 
the end, we will find that there are a collection of ‘pieces of 
the puzzle’ that when put together, form the end goal of a 
more future proof design. 
 
 

PARTS OF AN AUDIO NETWORK INTERFACE DESIGN 

• Timebase recovery (synchronization) 

• Audio packet handling 

• Audio data buffering 

• Buffer synchronization 

• Serial to parallel, parallel to serial 

• Connection management, discovery and control. 
 

TIMEBASE RECOVERY 

Timebase recovery is the essential process of having all 
devices on the audio network use a common sample rate and 
common knowledge of sample phase, which in the case of 
packet buffered blocks, where the block boundaries (or 
‘frames’ ) are at the same time.  Examples of timebase sync 
are IEEE-1588 and the earlier Livewire sync method, which 
are similar in function, but vary in some details.  All these 
methods use the mechanism of “clock packets” which 
contain a timestamp of the master clock at the moment they 
were sent, and are accurately timestamped with the local 
clock counter at the time of arrival.  

The first thing to note is that accurate timebase recovery 
is directly related to, and essential for, low latency (low 
delay) of the audio going over the network.  This is because 
the latency of an audio network is not the time of flight of 
the packets over the wire or packets though the switches 
(although over very long distances the speed of light does  
eventually dominate), the latency is determined by the 
amount of buffering used, and the minimum amount of 
buffering that can be used is determined by the time 
inaccuracy, the wander and jitter of the transfer of the data in 
time, which is all coordinated by the timebase as recovered 
at each device relative to each other.   So less accurate  
timebase recovery implementation would require more 
buffering, and would be only able to serve a higher latency 
audio network, but an accurate timebase recovery can serve 
both low and high latency audio network designs. 

If you want a very low latency audio network (for 
example the 750 microsecond “Livestream” mode of 
Livewire), this corresponds to an audio sample block of 12 
samples per packet at 48Khz sample rate, and an audio 
frame / packet rate of 4Khz (250 microseconds).   To do this 
in practice, we use a timebase recovery accuracy of +/- 5 
microseconds, which is about ¼ of a sample.  This very tight 
timebase accuracy is so the device can meet the schedule of 
taking input audio packets, performing required DSP, and 
transmit the output packets before the deadline of the next 



250 microsecond frame.  Any error in the local timebase 
relative to any other device takes away time that you have 
available to do processing of the audio.  You can pipeline 
the audio frames’ input / process / output sequence at the 
expense of added latency, but timebase error still threatens 
the ability to know the moment of time when all the input 
packets are present at the shifted execution time, and 
threatens making output transmissions by the frame 
deadline. 

It is possible to make use of a less accurate local 
timebase, even a purely software operating system task 
scheduler, as for example in purely software IP audio drivers 
for Windows / Mac OS / Linux are available to replace 
hardware sound cards.  But these software-only drivers 
cannot generate the lowest latency type of streams.  
Example: A typical OS task execution time accuracy is  +/- 
10 milliseconds (or more), with some of the better more 
modern OS’s down to a few milliseconds.   These require 
larger buffers at the receiving end to cover the transmit 
timing error, and this buffering causes the audio latency, in 
this the example just given, on the order of tens of 
milliseconds. 

To reiterate: an audio network interface product with a 
more accurate timebase can always interface with and easily 
meet the wider frame deadline of a higher latency audio 
network with bigger buffers.   But the converse is not true, a 
device with less accurate timebase cannot interface with a 
lower latency audio network. 

 
Puzzle Piece #1:   Design for high timebase accuracy, 

which will not limit you from interfacing to any audio 

network (high or low latency). 
 
The more accurate the time stamps are, the better, and 

less time measurement error is introduced into the timebase 
recovery process.  This is analogous to less noise input to a 
time recovery Phase Lock Loop (PLL).   The timestamping 
can be done in software (part of the packet receive interrupt), 
but the interrupt response latency then becomes timing error.  
(You may not want a high priority interrupt per packet, 
anyway. There can be many, many packets, hundreds of 
thousands of packets per second coming to your device  in a 
low latency multichannel audio network system.)  

The solution is to use an FPGA to monitor the incoming 
packets, and either timestamp all of them or have a 
recognition filter that finds the clock packets by pattern 
matching and performs the time stamp, and makes this time 
stamp information available to software which will be 
running a software PLL timebase recovery algorithm. 

IEEE-1588 enabled Ethernet hardware contains this 
same kind of timestamping mechanism.  Although with the 
present state of the art, you must pay close attention to the 
hardware features that are implemented in the chip you 
choose, and the features that the PTP (Precision Time 
Protocol) stack expects.  These must match.   Also 
depending on the assumptions made, an existing PTP stack 
implementation may or may not produce for you a usable 

hardware clock that you can run the sample clock of 
analog/AES converters from (if you are interfacing).   

 
Puzzle Piece #2:   Use an FPGA based incoming 

packet timestamping module. Stamp all packets, or be 

able to have its recognition filter configured to 

accommodate any of the sync clock packet formats. 
 
Sync recovery is essentially a PLL that steers a local 

programmable oscillator, in order to match the external 
clock master.   This sync method using relatively infrequent 
clock packets means that you don’t get a very large amount 
of sync ‘steering’ information.  In PLL terms, this means the 
bandwidth of the PLL feedback loop is low. When your PLL 
feedback bandwidth is low you benefit from the most stable 
local oscillator that you are using.  A PLL must steer itself to 
overcome 3 things: to track the remote master clock, to 
overcome the time noise (clock packet time jitter) and to 
compensate for the drift of the local oscillator.    

Hitching a ride from the digital cell phone industry it 
seems, a class of inexpensive TCXO (Temperature 
compensated crystal oscillator) of about +/- 2ppm are 
available for very reasonable cost around $2.   The net 
system performance this enables is worth this cost, to have a 
stable local timebase reference as compared to the 
difficulties created by the standard variety +/- 20 to 50ppm 
crystals.    A clock generator design that give simultaneously 
both stability, low jitter, and a wide range of high resolution 
programmability, which will be a solution for any audio 
network solution at any sample rate, is the Direct Digital 
Synthesis (DDS) method.    This can be a chip, or 
implemented in FPGA. 

Note: if you are to have analog audio converters in your 
product, or have AES digital local inputs and outputs with 
sample rate converters (SRC’s) to external AES sample 
rates, you use this master DDS generated timebase as your 
master overclock for the converters and the sample clock to 
the ‘inside’ of the AES SRC’s.   

Of course, the very nature of having an audio network 
allows you to eliminate analog or digital interfaces from the 
product design, if you so desire.   In this case, of a pure 
audio network device, you still have the need of an accurate 
local timebase to generate the essential moment in time (an 
interrupt to the processor) to know when to take the audio 
packets that came in, perform signal processing, and 
generate audio packets out to the network.  Any error in the 
moment of time that this process is triggered, represents 
being possibly late delivering output audio packets and in a 
low latency system, could underflow the small buffers of the 
next device in the audio path.  The existing crystal 
associated with the CPU may drift too much, and the 
scheduling time resolution of the existing CPU resources 
may be too coarse, so that the accurate TCXO plus DDS 
may still be desired. 

 
Puzzle Piece #3:  Use a local clock oscillator design 

consisting of a stable TCXO with a DDS architecture. 



The remaining part of audio network timebase recovery 
is essentially a “software PLL” that uses the differences 
between the received timestamps of the clock packets and 
the master clock time value carried inside the clock packet, 
to carefully speed up or slow down your steerable local 
clock (TXCO + DDS).  The details of how this is done vary 
for different audio network sync schemes, but the point here 
is that this should be software.   While it may be possible to 
implement more of the PLL control algorithm in hardware 
ASIC or FPGA, the observation is that the rate of clock 
packets is comparatively low (1 packets per second for 
IEEE-1588 up to 30 pps for Livewire) , so there is no real 
need not to handle this algorithmic complexity in software.   
In fact, the standard IEEE-1588 Precision Time Protocol 
(PTP) stack can do much of this work for you.   The catch is 
the assumptions made by the PTP stack as to how the local 
timebase is generated and steered.   A standard PTP stack 
may only be assuming that it is steering the kernel task 
scheduling mechanism, not a physical clock.  But this can be 
made to work with the right modifications to the PTP 
hardware driver. 

 
 Puzzle Piece #4:  Use a software PLL for timebase 

recovery. 

 

AUDIO PACKET HANDLING 

The assumption is being made that the actual network 
interface (Ethernet) is an embedded interface in a general 
purpose CPU.  Ethernet interfaces themselves are highly 
evolved (multiple generations of design technology since the 
1980’s), very efficient using fast block DMA offloading 
practically all load from the CPU, and very low cost, 
practically zero cost, being included in the core platform of 
the CPU.    For economical audio network interface design, 
we want to take advantage of all of the above factors and use 
the CPU embedded Ethernet interface, and avoid adding as 
much external special function hardware as possible. 

Multichannel uncompressed audio involves a relatively 
large amount of data throughput. If the data word and bit 
format of the audio samples and sample blocks do not 
exactly match the internal format of your processor, or if the 
audio channels are not packed or interleaved in a format 
compatible with your processor, this may represent a very 
significant CPU MIPS load, to unpack, possibly bit shuffle, 
and repack the audio network packet format.  

A CPU is very efficient moving blocks of data, either 
using a single cycle repeated ‘movem’ type opcode, or with 
DMA hardware assistance.  FPGA’s are very efficient at 
byte and bit manipulation, packing and unpacking. 

So the solution is to let the CPU be limited to doing 
block moves of audio data to and from the payloads of audio 
packets.   The audio data block moves go through a high 
bandwidth interface to and from an FPGA.  The FPGA does 
all of the bit level manipulation as needed, and channel 
interleaving, adapting to or from the details of the audio 
network data format. 

Puzzle Piece #5:   Let the host CPU do only block 

moves of audio data, the CPU never touches audio 

samples individually.  Use an FPGA to adapt / convert / 

repack or construct the detailed audio network packet 

payload format.  

 
Must there be an FPGA? 
No, but consider the following:  If your product has 

analog or AES local I/O, it is going to need multichannel 
parallel to serial / serial to parallel conversion, which is best 
performed in an FPGA.   The timestamping mechanism 
described above wants to live in an FPGA (unless you are 
strictly using IEEE-1588 enabled hardware for IEEE-1588 
sync only).  The high accuracy timebase requires logic.  This 
is a tradeoff between more cost for more CPU cycles as 
opposed the FPGA cost. If your design needs an FPGA for 
any of the other reasons, then partition the audio sample bit 
and packing functionality into the FPGA as well.     

AUDIO DATA BUFFERING 

Buffering may be done in the host CPU’s memory and 
in the FPGA.  Or alternatively all buffering in the FPGA.   
Remember for low latency audio, the buffers are small, so 
not so much FPGA RAM is needed for buffering. For high 
latency larger buffers, CPU host memory is more 
economical, holding audio in blocks in the format of the 
audio network packet payload. 

 
Puzzle Piece #6:   Audio data buffering can be in the 

host CPU memory (as packet payload formatted blocks),  

in the FPGA, both, or only in FPGA. 

 

BUFFER SYNCHRONIZATION 

Buffer synchronization means knowing where in the 
buffer to put the latest arriving input data, and from where in 
the buffer to take out audio data to be sent at present instant 
of time, as a function of absolute time and /or the immediate 
relative time to network frames. 

Buffer sync can be tricky.  Pointers have to be 
initialized, the data transfer process has to be initiated at just 
the correct time, then increment the pointers exactly to 
match the data flow.  Finally the buffer pointer logic has to 
be able to recover from abnormal conditions such as missing 
packets, momentary network disconnect or  malfunction, and 
transient conditions of timebase recovery (either initially or 
transfer of clock mastership events).  If you want to give the 
acid test to a audio network product design, in the middle of 
audio streaming, unplug and replug the network cable a 
couple of times in quick succession, and see if the audio 
recovers completely and cleanly in a relatively short time (a 
fraction of a second, ideally).   If not, this is a sign of buffer 
synchronization logic problems. 

While it is possible to implement buffer sync logic in 
FPGA, the number of special cases point to a software 
implementation, that guides or command FPGA buffer 
pointers as needed. 



It is to be noted here that there can be relatively major 
differences between different audio networks in this 
seemingly straightforward topic of buffer sync logic.  The 
differences stem from the fundamental policy defined by the 
audio network, of when the samples of a given audio stream 
are to be played out.    

One policy is to begin to play out the audio stream as 
soon as possible, with as little buffering as possible as 
determined by the timebase accuracy of the receiving device.   
This has the advantages of simplicity of definition, and the 
ability to automatically adapt to long distance transmission 
where the time of flight of the packets is not negligible, but 
has the disadvantage that the absolute time that a given 
audio sample is used (or output) at the destination is not 
precisely defined.  In practice this latter disadvantage is 
unimportant if the latency is low, and audio streams closely 
related to one another in phase (i.e. stereo pairs or surround 
channel sets) share the same packets in the same stream. 

An alternate audio network policy is to play out the 
audio stream samples according to the correct absolute time 
as defined by the timebase information in the audio packets 
themselves.  This has the advantage of precise definition of 
the use or output time of all audio samples and channels, 
regardless of how they are grouped together in shared 
packets or not.  

Precise differences in these two policies, amounts to 
different audio buffer synchronization logic.  For an audio 
network interface design to not be limited to one policy or 
the other, and to be able to handle the more complex special 
cases, the audio buffer logic should be in software. 

 
Puzzle Piece #7:  Implement audio buffer 

synchronization logic in software. 
 

SERIAL / PARALLEL INTERFACING 

If the audio network device contains local analog or 
digital AES interfaces, or contains DSP functions that are 
best served their input/output data on multichannel serial 
ports, multichannel serialization is most straightforward to 
implement in FPGA logic.   

Note that at all of these serial interfaces the timebase is 
still defined by the audio network.  In other words, the bit 
clocks and frame signals are derived from the master DDS, 
which is steered by the software PLL to come into sync with 
the audio network master clock.    A local interface, or DSP 
device cannot be the master clock for any of the interfaces 
which end up going to an audio network.  An audio network 
requires all interfaces to be synchronous to its timebase. 

 If an interface or a device is fundamentally on its own 
sample rate or timebase, and cannot be made to use the 
audio network sample rate and timebase, audio sample rate 
converters (SRCs) will have to be used.   Every SRC has two 
clock inputs, one for each side of the converter.  In the case 
of an audio network, one side of the SRC will be connected 
to the audio network interface logic, and be a slave to the 
network interface logic master clock.  The other side of the 

SRC can face the outside, non-network interface, and be a 
slave to that interface’s master clock. 

 
Puzzle Piece #8:  Use sample rate converters (SRCs) 

to interface all local audio interfaces or devices that 

cannot be slaved to the overall audio network sample 

rate and timebase. 

 

CONNECTION MANAGEMENT, DISCOVERY AND 

CONTROL 

An audio network accomplishes the connection and 
transport of many thousands of channels of audio in an 
efficient and timely manner.  Imagine a giant, low cost, easy 
to automate,  patch panel.  But as soon as you have a 
complex operation, using thousands of channels of audio, 
and you care about what the end result sounds like, you are 
going to have to practically manage all of those channels. 

 
Some brief definitions:    
 
Connection management is the process used to make 

audio routes from point to point, once the user decides which 
input channel of audio is desired to appear at each output.  
The different connection management methods may range 
from using network broadcast addressing (no management at 
all, flood the entire network), to multicast (freely transmit all 
channels, receiver selects which channel), to unicast (arrange 
each transmit / receive pair on a one to one basis). 

Discovery is finding out what audio channels are 
present, and what material they contain.  This can range 
from a fixed prearranged order, on the fly data gathering, or 
a central registration and database lookup scheme. 

Control is initiating or ending the audio connections if 
the endpoints need to be turned on and off, optional gain 
controls, initiating channel changes, etc.  

The good news is that an audio network, being based on 
a data network, easily handles all of these required 
management tasks without any additional cables, wires, or 
interfaces.  The bandwidth for connection management, 
discovery and control is a small fraction of the network 
bandwidth consumed by the audio, so with proper use of 
Quality of Service (QOS), can coexist.   The bad news is that 
these methods are farther in the future from standardization 
than the audio part of the audio network itself.   

 
Puzzle Piece #9:  Be prepared to be flexible with 

software implementations of connection management, 

discovery and control. 

 

 

 

 

 



CONCLUSION 

By breaking down the implementation of an audio 
network interface design into these flexible parts as we have 
examined here, they can be seen to be capable of not 
needing too extensive modifications to interoperate with 
many of the existing audio digital audio networks, and the 
future X192 AES standard whatever that settles to.    By 
managing the design risk, products can be brought to market 
today without having to wait for future standards to settle, 
and with confidence that the future standards will be able to 
be supported. 

 

APPENDIX 

 CASE EXAMPLE: WHAT IT TOOK TO EVOLVE LIVEWIRE 

EQUIPMENT TO BE COMPLIANT WITH RAVENNA 

Livewire is a digital audio network system from Telos 
Systems, established over 10 years and in use in over 3000 
radio studios worldwide.  In the spring of 2012, it was 
announced that Livewire devices would embrace and 
support Ravenna, a contemporary digital audio network, 
because the value for all present and future Livewire 
customers is increased with interoperability.   Support is also 
given by for the AES X192 initiative to define a 
interoperable digital audio network standard.   Examining 
the details of what it took to make Livewire equipment able 
to fully support Ravenna, is informative and instructive to 
the subject of this paper. 

 Livewire and Ravenna both used a common IETF RTP 
(Real Time Protocol) L24 audio stream packet format, which 
defines all of the contents of the audio packets.   What could 
be wrong?   There were three main hurdles: 

Hurdle #1: Ravenna relied on a specific use of the 
source timestamp in the audio packet, Livewire did not. 

Solution:   1a) For compatibility with existing Livewire 
devices, Ravenna defined a new ‘Livewire compatible 
relaxed mode’, ignoring this value.    

1b) The software driver in newer designed Livewire 
products will fill in the source timestamp value, to be fully 
Ravenna compliant. 

Hurdle #2 : Ravenna uses RTCP messages in the audio 
multicast channel to control audio streams.  Livewire 
assumes streams are ‘always on’ and does not use nor expect 
RTCP packets. 

Solution 2) a software update for Livewire devices to 
safely filter out and ignore the extra RTCP packets.  

Hurdle #3 :  Different sync methods.  Ravenna uses 
IEEE-1588, Livewire uses a pre-1588 sync method. 

Solution 3a) As long as both systems externally slaved 
to the same master timebase, both are in sync with each 
other.    

3b) Newer designed Axia products now can use IEEE-
1588 directly, consisting of modifications to the FPGA clock 
packet timestamp filter, and modifications to the timebase 
recovery synchronization software PLL routine. 

Summary: The required modifications to make the 
Livewire interface equipment also compatible with Ravenna 
were relatively minor, able to be changes in FPGA design 
and software drivers.   This bodes well for being able to 
adapt to future standards like AES X192, when it settles. 

 

REFERENCES 

 
[1] Various authors. White papers at 

www.axiaaudio.com/tech 

[2] Church, Steve G. (2009).  Audio Over IP: Building Pro 

AoIP Systems with Livewire.  Focal Press. 

[3] Audio Engineering Society,  X192 High-performance 

streaming audio over IP interoperability. 
www.x192.org 

 

 

 


